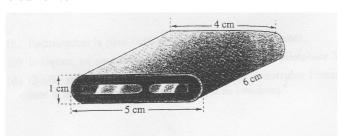
Examen de Géométrie – Janvier 2017

Question 1

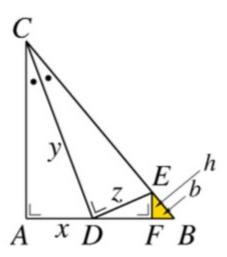
- (1) Définissez le produit vectoriel de deux vecteurs dans \mathbb{R}^3 .
- (2) On vous demande de concevoir un pont basculant qui a une longueur de 50 mètres lorsqu'il est abaissé au dessus d'une rivière. Les deux parties de ce pont ont même longueur, sont fixées à leur extrémité et peuvent être relevées d'un angle de maximum 45 degrés. Sachant que le niveau de l'eau est à 5 mètres sous le pont abaissé,
 - (a) calculez la distance d entre l'extrémité d'une partie du pont et l'eau lorsque le pont est entièrement levé;
 - (b) calculez la distance entre les extrémités des deux parties du pont lorsque celui-ci est entièrement levé.
 - (c) Représentez la situation lorsque le pont est entièrement levé.


Question 2

(1) Démontrez que la surface S du triangle de côtés a, b, c est donnée par

$$S = \frac{abc}{4R}$$

où R est le rayon du cercle circonscrit au triangle.


(2) On considère la pile suivante.

Calculez son volume ainsi que l'aire d'une étiquette qui ferait tout le tour de la pile.

Question 3

- (1) Enoncez le Théorème de Thalès.
- (2) On considère le triangle ABC représenté ci-dessous où AC est de longueur 3 et DF de longueur 1. Calculez la surface S du triangle FEB. Pour cela,
 - (a) déterminez deux triangles semblables au triangle ADC. Justifiez et écrivez les égalités correspondantes;
 - (b) déduisez-en la longueur x;
 - (c) déterminez h et b et déduisez-en la surface S.

Question 4

(1) On considère la sphère ayant pour équation

$$x^2 + y^2 + z^2 - 2x + 4y - 6z = 2.$$

- (a) Déterminez le centre et le rayon de cette sphère.
- (b) Déterminez l'intersection de la sphère avec le plan OXY. De quelle forme géométrique s'agit-il? Précisez son équation et ses caractéristiques.
- (2) Soit P = (-1, 2, 1) et $\Pi : x y + 2z 5 = 0$.
 - (a) Déterminez un point et un vecteur normal au plan Π .
 - (b) Déterminez le point Q, projection orthogonale de P sur Π .
 - (c) Déterminez le point R, symétrique du point P par rapport à Π .
 - (d) Déterminez la distance entre le point P et le plan Π .

Question 5

(1) Les propositions suivantes sont-elles vraies ou fausses? Répondez par V ou F dans la case à la fin de la phrase, $sans\ justifier$. Une mauvaise réponse entraı̂nera l'annulation d'une bonne réponse. Vous pouvez vous abstenir sans être pénalisé.

(a) Pour tout $x \in \mathbb{R}$, on a $\cos(2x) = 2 \sin x \cos x$.	
(b) Le point $P = (2, -2\sqrt{3})$ se trouve à distance 16 de l'origine.	
(c) Le nombre $\vec{a}\odot\vec{b}$ représente l'aire du parallélogramme construit sur les vecteurs \vec{a} et \vec{b} .	
(d) La résultante des forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ est obtenue en additionnant ces deux forces.	
(e) La pente de la droite $3x - 2y + 4 = 0$ vaut 3.	

(2) Ecrivez la réponse correcte dans la case à la fin de la phrase sans justifier.

(a) Soit $A = (-1, 1)$ et $B = (2, 1)$. Déterminez les coordonnées du vecteur \overrightarrow{AB} .	
(b) Déterminez l'équation de la droite passant par les points $(1,2)$ et $(4,4)$.	
(c) Déterminez l'angle d'un polygone régulier à 9 côtés.	
(d) Donnez l'équation du plan médiateur du segment AB où $A=(3,-3,0)$ et $B=(5,7,4).$	
(e) Par combien est multiplié le volume d'un cône circulaire si on triple son rayon et on divise par 2 sa hauteur?	