Chapitre 6 : Les vecteurs – Définitions et propriétés

Questions de théorie

- 1. Définissez un vecteur.
- 2. Comment détermine-t-on les composantes d'un vecteur dont l'origine est l'origine du repère (dans le plan et dans l'espace)?
- 3. Comment détermine-t-on les composantes d'un vecteur quelconque (dans le plan et dans l'espace)?
- 4. Si $\overrightarrow{OU} = \overrightarrow{u} = (u_x, u_y)$ et $\overrightarrow{OV} = \overrightarrow{v} = (v_x, v_y)$, démontrez que les composantes du vecteur \overrightarrow{UV} sont $(v_x u_x, v_y u_y)$.
- 5. Comment trouver la norme d'un vecteur (dans le plan et dans l'espace)?
- 6. Définissez addition et soustraction de vecteurs (dans le plan et dans l'espace).
- 7. Interprétez géométriquement l'addition de deux vecteurs et la soustraction de deux vecteurs.
- 8. Enoncez les propriétés de l'addition de vecteurs.
- 9. Quel est le vecteur neutre pour l'addition?
- 10. Quel est l'opposé du vecteur $\vec{v} = (v_x, v_y)$?
- 11. Définissez le milieu du vecteur \overrightarrow{AB} où $A = (x_a, y_a, z_a)$ et $B = (x_b, y_b, z_b)$.
- 12. Si $\overrightarrow{OU} = \overrightarrow{u} = (u_x, u_y)$ et $\overrightarrow{OV} = \overrightarrow{v} = (v_x, v_y)$, démontrez que les composantes du milieu M de \overrightarrow{UV} sont $\frac{1}{2}(u_x + v_x, u_y + v_y)$.
- 13. Définissez la multiplication d'un vecteur par un scalaire et donnez-en une interprétation géométrique.
- 14. Enoncez les propriétés de la multiplication d'un vecteur par un scalaire.
- 15. Définissez des vecteurs parallèles ou colinéaires.
- 16. Comment voit-on que deux vecteurs sont parallèles?
- 17. Définissez le *produit scalaire* de deux vecteurs.
- 18. Enoncez les propriétés du produit scalaire de deux vecteurs.
- 19. Donnez une interprétation géométrique du produit scalaire de deux vecteurs.
- 20. Comment peut-on déterminer l'angle entre deux vecteurs?
- 21. Démontrez que si α désigne l'angle entre les deux vecteurs non nuls \vec{u} et \vec{v} , alors $\vec{u} \odot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \alpha$.
- 22. Définissez des vecteurs orthogonaux.
- 23. Comment reconnait-on si deux vecteurs sont orthogonaux?
- 24. Définissez la projection orthogonale et la composante d'un vecteur \vec{v} suivant un vecteur \vec{u} .
- 25. Démontrez que $\operatorname{comp}_u \vec{v} = \frac{\vec{u} \odot \vec{v}}{\|\vec{u}\|}$.
- 26. Enoncez et démontrez l'inégalité de Cauchy-Schwartz.

- 27. Enoncez et démontrez l'inégalité triangulaire. Donnez une interprétation géométrique de cette inégalité.
- 28. Définissez le produit vectoriel de deux vecteurs.
- 29. Enoncez les propriétés du produit vectoriel de deux vecteurs.
- 30. Donnez les composantes du vecteur $\vec{u} \times \vec{v}$ si $\vec{u} = (u_x, u_y, u_z)$ et $\vec{v} = (v_x, v_y, v_z)$.
- 31. Donnez une interprétation géométrique du produit vectoriel de deux vecteurs.
- 32. Démontrez que la longueur $\|\vec{u} \times \vec{v}\|$ est l'aire du parallélogramme construit sur les vecteurs \vec{u} et \vec{v} .
- 33. Comment voit-on à l'aide du produit vectoriel que deux vecteurs sont colinéaires?
- 34. Définissez le produit mixte de trois vecteurs.
- 35. Donnez une interprétation géométrique du produit mixte de trois vecteurs.
- 36. Démontrez que dans un repère cartésien orthonormé, le nombre réel $|(\vec{u} \times \vec{v}) \odot \vec{w}|$ représente le volume du parallélipipède construit sur les vecteurs \vec{u} , \vec{v} et \vec{w} , où \vec{u} et \vec{v} forment la base du parallélipipède.